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Abstract—A general method for analysing the time-dependent inelastic response of three-dimensional
metallic bodies to arbitrary time-varying mechanical loads and temperature is presented in this paper. The
method is capable of using any of a number of constitutive relations using state variables that have been
recently proposed by other researchers. The constitutive equations due to Hart are used in the numerical
calculations. Hart's model has been previously shown to accurately simulate the deformation behavior of
uniaxial metallic specimens subjected to various histories of stress and strain. Numerical results are
presented here for the mechanical response of a sphere to various prescribed internal pressure or internal
displacement histories. Various experimentally observed phenomena in creep and plasticity such as
constant stress creep, stress redistribution, history dependence, creep recovery, plastic work hardening,
strain rate sensitivity and Bauschinger's effect are shown to be qualitatively predicted by Hart’s model for
this muitiaxial problem.

1. INTRODUCTION

The classical theories of creep described in the books by Rabotnov[1], Penny and Marriott[2]
and Odqvist{3], for example, have several drawbacks as discussed by Krempl{4-6]. To
overcome shortcomings of classical theories and to have more faithful representations of the
time dependent non-elastic deformation of metals and alloys at elevated temperatures, a broad
class of newer constitutive relations have been proposed in recent years in terms of state
variables by various researchers(7-13]. The present authors recently proposed[14-16] an
efficient method for inelastic analysis of three-dimensional bodies subjected to steady loadings
and temperature distributions, using these state variable theories. In the present paper, a
general time-dependent inelastic analysis procedure for three-dimensional bodies subjected to
arbitrary time-varying mechanical loads and temperatures, is presented. The loads are supposed
to vary slowly in time so that inertia effects are negligible. A brief review of the salient features
of state variable theories is presented in the next section. The reader is referred to[7-13] for a
more detailed discussion. This is followed by a presentation of the computational scheme for
general three-dimensional problems and then an illustrative problem involving a sphere.
Numerical results are presented for the response of a 304 stainless steel sphere at 400°C to a
variety of internal pressure and internal displacement histories. Hart’s complete constitutive
relations are used in these calculations. The significance of phenomena such as creep, stress
redistribution history dependence, creep recovery, plastic work hardening, strain-rate sensitivity
and Bauschinger’s effect are discussed in the context of Hart’s theory.

2. STATE VARIABLE THEORIES
The mathematical structure of the state variable theories of inelastic deformation[7-13) has
some salient features which permit a simple and efficient method of time-dependent, three
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564 S. MUKHERJEE et al.

dimensional inelastic analysis. According to these theories, the total strain tensor € at any time
consists of the sum of the elastic strain €°, the nonelastic strain €” and the thermal strain €.
Thus, in terms of rates

é=é+é"+é". m

The nonelastic strain €" is time and history dependent and includes both the time-independent
plastic (in the sense of classical plasticity) and time-dependent creep strains. There is no yield
surface in the sense that &” is assumed to exist at all stages of the deformation process.

The nonelastic behavior is described in terms of certain well defined state variables g;
(i =1,...n) which may be scalars or tensors. These state variables are assumed to completely
characterize the present deformation state of the material and differentiate between geometric-
ally identical specimens with different initial deformation states. They vary along the defor-
mation path according to certain laws and their values at the current time depend upon the
deformation history upto this time. Moreover, the history dependence of the rate of nonelastic
strain upto the current time is completely taken into account by the values of q; at this
time and no further knowledge of the prior deformation history is required. With this in view,
the constitutive equations assume the forms

€"=Ho,q,T) ()
q=g(o.q,T) 3)

where o is the stress tensor and T the temperature. Also, nonelastic deformation is assumed
deviatoric, i.e.

€x=0. 4

Because of this, the stress o in eqns (2) and (3) is often replaced by its deviatoric part defined
as

s=o - (113)oul &)

In the above, a tensor A has caresian components A; and, as usual, a repeated index implies
summation over that index. I is the identity tensor. The initial deformation state of the structure
must be specified by prescribing initial values of the state variables q;

Many of these state variable theories try to include various phenomena such as strain rate
sensitivity, work-hardening, Bauschinger’s effect, history dependence, creep recovery, material
softening etc. that are observed in metals at elevated temperatures. The state variables q; have
different meanings in different theories. The proposed computational scheme depends only
upon the mathematical structure of the constitutive relations as described above and not upon
their explicit forms. Therefore, these specific forms are not given here. The specific forms of
Hart’s constitutive equations, used in numerical calculations, are presented later in the paper.

3. COMPUTATIONAL METHOD

A computational method for solving boundary value problems for three-dimensional metal-
lic bodies subjected to time-varying loads and temperature distributions is presented below. The
proposed method consists of formulating a given problem in terms of real time rates which
leads to an inhomogeneous linear boundary value problem for the stress or displacement rates.
The linear boundary value problem thus obtained is solved to find the rates of the variables of
interest throughout the body at any time, and then these rates are integrated forward in time to
obtain the time-histories of the variables of interest.

The governing differential equations of the problem in terms of rates are as follows:

kinematic: é=¢éj+élt+él= 3 (dyy + 1) (6)
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or, equivalently, the total strain rates must satisfy the compatibility equation

VX EXV = Cimplissbpsmk =0 )]
equilibrium: g =-F ®
constitutive: éi= G (a'., T+» vu&,) ®

é"=Ho.q,T) (10)

G,T =a 131; (1 1)

=gio,q; 7). (12)

In the above y; is the displacement vector, F; the body force vector per unit volume, » the
Poisson’s ratio, G the shear modulus, a the coefficient of linear thermal expansion, ey the
alternating tensor, 8; the Kronecker delta and V the gradient operator.

3.1 Stress rate formulation
Using the constitutive eqns (6) and (9), the compatibility equation (7) becomes

Vx[za( l:vd'ul)]xv=—Vxé"xV—Vx[aTl]xv. (13)

The traction boundary condition is
ayny =7 (14)
where n is the unit outward normal to the surface S of the body and r the surface traction

vector prescribed on S.

3.2 Displacement rate formulation
The equilibrium eqn (8), written in terms of displacement rates using eqn (6) and eqns (9)
and (11), becomes

1. ) A 21+
+——1_2vu G+2¢W+1 3y aT,. (15)

The boundary conditions can either involve stresses, i.e.

an; = G( 2y uun,+(uu+ Ui )n; — 2é5m; — -Z-Q:F—:)-afh,)
=7 on S (16)

or displacements, i.e.

i=AonS an

where A is the prescribed displacement vector on the surface of the body.

The initial conditions are obtained by specifying the initial distribution of state variables
g;(x, 0) throughout the body, and by taking the initial nonelastic strains to be zero. Thus the
total initial strain only has elastic and thermal components so that the initial stresses are given
by the solution of the corresponding thermoelastic ‘problem with identical material and
geometry. Thus

ay(x, 0) = Fy(x), €;(x, 0) = &(x) = e§(x, 0) + €} (x, 0)
€ii(x, 0) =0, g,(x, 0) = §i(x) (18)
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where &y and é; correspond to the thermoelastic solution. The thermoelastic solution always
determines &, and é; regardless of the magnitudes of the initial loads and state variables.

Thermomechanical coupling is ignored. The temperature on the surface of the body S is
assumed to change slowly in time and thermal steady state conditions are assumed to exist
throughout the body at each time. Thus, at any time, the temperature T'(x,?) throughout the
body is obtained by solving the steady state heat conduction equation subject to prescribed
(time varying) thermal boundary conditions on the surface 5. The body force distribution is also
assumed to be completely prescribed throughout the body at all times.

The resulting boundary value problems discussed in Sections 3.1 and 3.2 are linear in stress rates
and displacement rates respectively. The inhomogeneous terms on the r.h.s. of eqns (8), (13) and
(15) are known at any time provided that the spatial distributions of stresses, state variables,
temperature and body forces are known at that time. The structure of these boundary value
problems is seen to be very similar to those of classical thermoelasticity.

4. ILLUSTRATIVE PROBLEMS

The formulation of boundary value problems involving a sphere subjected to time varying
loads and temperature distributions is presented in this section.

A thick spherical shell of internal and external radii ¢ and b is subjected to internal and
external pressures p(¢) and g(t). The internal temperature is T,(¢) and the external temperature
Ty(t) (Fig. 1). Because of spherical symmetry, the only nonzero displacement component is
the radial displacement u(7, t) and the nonzero stress and strain components are o, 0y = 0, €
and ¢ = ¢,

The kinematic and equilibrium equations have the usual forms given in Kumar and
Mukherjee[15, 16]. The constitutive equations are:

& =[0,~2005)/[E+ €} +aT (19)
& =[(1-v)oy -, )/E+ €5 +aT (20)
& =floq), &=/ q) @1
é+25=0 (2)

In the above, E is the Young’s modulus. To this list eqn (3) must be added. The boundary
conditions are as given in[16] with p, g, T,, T, functions of time. The initial conditions are

q(r,0) = qf(r) (23)

together with the zero time thermoelastic solution to the problem given in Timoshenko and
Goodier([17] (see also Kumar([18)).

Fig. 1. Sphere under internal and external pressure.
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Using the displacement rate formulation outlined in Section 3.2 the displacement rate and
then the stress rates are obtained. The stress rates are given by the following equations

r b
- E _ﬁi _(r‘—a’)b’ _é_,: 1 s 30p3 3,3 _
(SN % n-G= s [ in)+ g o=+ b0 -

+8E}?)(; T_.):I; [a +b _(a’+a:; + b’)+ a’sz] 24
=(1fv)(f£’:d’" (Z'Jt:’;b é-dn+") —;—:-—-r(a [-pa’2r+b?)

+qb’(2f+a=)]+£’-’"-(-€-x—b,’3’4‘%[ sp-arabil ;f:] @)

t=t+(t- Tzt (3-1). (26)

The first term in either of eqns (24) or (25) is due to the presence of nonelastic strain rates.
The second is the time derivative of Lame's elastic solution of the problem and the third is the
time derivative of the thermoelastic component of the stress.

The problem can now be solved using a suitable scheme for integration in time and the time
histories of the variables of interest obtained.

Another problem of interest is the response of a sphere to prescribed internal radial
displacement and external pressure. The boundary conditions for this problem are

u(a, ) = uy(t) 27
o,(b, t) = —q(t). (28)

For simplicity, the temperature is assumed to be uniform throughout the sphere-and steady in
time. In this case, the stress rate eqns (24) and (25) must be replaced by

o= () ([ £ fLuTrbr:f""" )+ e(1-B) - M0k o9

w= (72 )(J¢ dn+$ *f((_br%bsfé' )+ foy (24 ) e+ B3 B e o

1-v/\J

where
f(n=21-2m)a’+(1+wn)r (1)
g =(1-2v)a’-(1+»)r. 32

5. HART'S CONSTITUTIVE RELATIONS

The constitutive relations proposed by Hart[7, 8, 19] are used in numerical calculations for
the problems discussed in the previous section. Hart's equations have been used to accurately
predict uniaxial deformation behavior of several metals and alloys. Recently, uniaxial creep and
tensile tests were carried out on Nickel and 304 stainless steel specimens at various tempera-
tures for various values of itress and strain rate and the results compared with predictions from
Hart’s constitutive equations. The correlation between theory and experiment was found to be
very good. These results are available in [20] and [21]). A brief review of Hart's constitutive
relations is presented in this section. The details can be obtained from[7, 8, 19).

According to Hart, the nonelastic strain rate é* for grain matrix deformation, consists of
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two components
€ =é"+é. (33)

Here €° is the anelastic strain due to grain matrix deformation, a stored strain that is eventually
completely recoverabie upon unloading, and é” is the permanent strain rate. The corresponding
permanent strain ¢’ is path dependent and completely irrecoverable. The state variables are the
anelastic strain tensor ¢° and scalar hardness o*. The path dependent nonelastic strain, €", is
explicitly rejected as a state variable. Let s represent the deviatoric part of stress tensor o. The
deviatoric stress tensor s is composed of two auxiliary tensors s° and s’

s=s+d. (34)
The flow relations are

€= %5.7 s’ (35)

&= %-ﬁ;s‘ (36)

"= %gys’ (3N

where é", é*, €, o, ¢° and o are scalers defined as

e G onGe). cnGe)

(38)
o= J(%Squ), o'm \/(-;-szs?,). o - \/(% s{,s{,).

These scalers are related to each other through the uniaxial relations
o’ = Me* (39)
e
&= é‘(ln %;)-m 1)
* = éo*l'(a*, o° 42)

where

() 1o (-B)

In the above &, M, m, A, £, and d* are flow parameters for a material and some of these are
functions of temperature, R is the gas constant, Q the activation energy for atomic seif-
diffusion and G the shear mogwlus at temperature T. The work: hardening function is I'. The
flow parameters are determingd experimentally from a series. of load relaxation and load change
tests and the work hardening fupction from a series of strain hardening tests. It can be verified
casily that the above constitutive relations have the same structure as described by eqns (2)-(4).
An alternative but equivalent formulation is given in[8] where the strain invariants and flow
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rules are written without numerical multipliers, ¢.g.
& =V(eje), é= f; ¢, etc.
In this case a set of uniaxial quantities must be suitably defined in terms of the invariants in

order to ensure consistency of the uniaxial and multiaxial equations (see Table 1).

Table 1. Equivalence of 3-D and uniaxial quantities, in case
of isotropy, for Hart's formulation in Ref.[8), (Similar
relationships hold for other strains, strain-rates and stresses)

3-D quantities uniaxial quantities

f’ VG-

Qe

(M =1)2)
a* (3 i

r VG)r
The viscoplastic limit
Hart's equations (33)-(43) can be directly used for numerical computation. However, in the
region o“ = o*, eqn (41) predicts large values of é” and consequently very small time-steps are
required in the computation. For the sake of computational efficiency, the condition ¢* = o*
can be used to replace eqn (41) in this region. It can be shown easily that in this case the new
equation for é” becomes

o = Sidilo” (44)

The region where o° =~ o* and ¢° = * is called the viscoplastic limit. The justification for
the use of the condition ¢* = g* is the shape of the Ino*-iné" curves obtained experimentally
(see for example, Figs. 5, 7 and 8 in [8]). It is observed that these curves become essentially flat
(i.e. o*=~c*) for sufficiently large values of é”. Thus, the relation ¢° = d* can be used
whenever é® exceeds a certain critical value é°. This critical value depends on ¢* according to
the equation

&’ = ét(o*lo)" (45)

which is a straight line in a log-log plot. Some problems might arise following sharp dis-
continuities in loading histories. In this case, one simply reverts back to eqn (41) instead of (44).

Equation (44) has been used instead of (41) in the viscoplastic limit region in the numerical
calculations presented in the next section. This considerably improves computational efficiency
without altering the results significantly. Further details regarding the viscoplastic limit are
available in[20].

6. NUMERICAL RESULTS AND DISCUSSION
Results of numerical calculations carried out for a 304 stainless sieel sphere at a uniform
temperature of 400°C are presented in this section. The work hardening function in this case has
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the form
[(o*, o*) = (Blo*)(a®la*P"". (46)
The values of the various flow parameters are[20, 21]
A=0.15 M=78 m=S5
d*=0.6937x 10¥sec™ M =0.132x 10°psi
é* =0.252 % 107(o*/45,670) sec™".
The work hardening parameters are
B=0.179%x10°psi &=1.33
and the parameters defining the viscoplastic limit are
€5 =02123x10"%sec™  o4* = 10,000 psi.
Finally, the elastic constants are
E=0244x10°psi v =0.298.

In the above, the hardness and stress are in units of psi and time is in seconds.
The appropriate equations are nondimensionalized through the use of the following dimension-
less variables

y=vZ @7
where v is any variable having the dimensions of stress and £ = 10,000 psi. Also,
E=rla, k=bla, ii=ula. (48)

Either the internal pressure or the internal displacément is assumed to be prescribed in time
and the external pressure q is taken to be zero for all time in all cases. The initial stresses and
strains are obtained from Lame’s elastic solution to the appropriate problem. The initial
anelastic and permanent strains are taken to be zero in all cases while the initial hardness
distribution is prescribed at an uniform vilue throughout the sphere.

The time rates of change of the relevant quantities at zero time are obtained from Hart's
conmstitutive equations (33)~(43) and the stress rate equations (24) and (25) or (29) and (30). The
stresses, displacements and state variables at a new time At are obtained using a modified Euler
predictor-corrector scheme of the type

L=1tn “9)

yP(+ A1) = y(t) + At f(y, 1) (50)

YU +80) = y(0)+ 3 AL(F(y, 0+ %, £+ A1) Q)
y(t +At) =(4/5)yC(t+At)+ (1/5)y" (¢ + A¢). (52)

These values at time At are now used to find the new rates at ¢ = At and so on, and the
process continued upto the final desired time. The maximum percentage difference between
predictor and corrector values for any variable being integrated, at any spatial location within



Elevated temperature inelastic analysis of metallic media 671

the sphere, at any time step, is limited 10 0.05%. A much tighter error bound does not alter the
results significantly.

The radius ratio k for the sphere is 1.5 and the dimensionless shell thickness k — 1 is divided
into 20 equal segments for these numerical calculations. Spatial integrals are evaluated using
Simpson’s rule. Typical computing times for single calculations are between 1 and 2 min on an
IBM 370/168 computer.

Numerical results for several prescribed histories of internal pressure and internal dis-
placement are presented in Figs. 2-14. Results for constant internal pressure are shown in Figs.
2-5. It is seen from Fig. 2 that an initially hardened sphere (11% initial cold work) creeps less
than an identical annealed sphere at the same pressure (15 ksi). As expected, larger pressures
cause more “initial” deformation and creep and the response is highly non-linear. For a
pressure of 20 ksi, for example, the hoop strain at the inner wall of the sphere is about 1.55%
within a very short time. This is the sum of the elastic and “instantaneous plastic™ strain of
classical plasticity. Redistribution of stress invariants and hardness and of radial and tangential
stress are shown in Figs. 3-5. The anelastic stress invariant ¢, which is initially zero, increases
till it equals the initial hardness (17 ksi) at the inner wall (Fig. 3). The hardness is then driven up
until o ~ o* throughout the sphere. At all times, o* 2 ¢® and o = ¢*. The “instantaneous”
deformation of classical plasticity is accumulated very quickly during the saturation of the
anelastic stress invariant o*. Redistribution of the radial and tangential stresses (Figs. 4 and 5)
is simulated as expected. A discontinuity in the slope of the tangential stress is seen to
propagate quickly from the inside to the outside of the sphere.

The response to an interrupted load history is shown in Fig. 6. There is creep recovery at
zero load. The effect of previous history on subsequent deformation is evident from the
displacement at the inner wall of the sphere upon reloading. The material hardens and the creep
rate is lower than at the start. The change of hardness and the anelastic stress invariant at the
inner wall with time for this case is shown in Fig. 7. The state variables have different values at
the point of reloading compared to those at the start and this causes the difference in the
response of the sphere.

The response to a load change is shown in Fig. 8. The creep strain rate increases upon
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increase of load and the displacement for the case of a constant internal pressure of 20 ksi is
greater than that for the case where the pressure is 15 ksi for the first 3 hr and is then raised to
20 ksi.

A comparison with classical plasticity for the case of pressure increasing at a constant rate
is shown in Fig. 9. The prescribed pressure rate corresponds to an initial tangential strain rate at
the inner wall of 107 sec™'. The yield stress and siope of the stress-strain curve for the
rigid-linear work hardening plasticity model is obtained from uniaxial work hardening experi-
ments, performed at Cornell{20]. The prescribed strain rate in these uniaxial experiments was
0.02/min. The stress-strain data was reduced to produce a plot of o* as a function of strain.
The initial hardness of the specimen in question, o*, was the hardness value corresponding to
zero strain, obtained by extrapolation. Details of this procedure, together with experimental
results, are available in{20]. The correlation for two values of initial hardness is excellent.
Redistribution of radial and tangential stress for this case is shown in Figs. 10 and 11. The
expected propagation of the discontinuity in the slope of the tangential stress is seen in Fig. 11.

Strain rate sensitivity is shown in Fig. 12. This time the internal displacement history is
prescribed. The strain rate sensitivity of 304 SS at 400°C is known to be small from experiments
and this is seen in Fig. 12. The higher the strain rate, the larger is the pressure required to get
the same accumulated strain.

Finally, the response to cyclic internal displacement is shown in Fig. 13. Bauschinger’s
effect and cyclic hardening is simulated by the theory. The nature of the stress-strain curve is
qualitatively similar to that obtained from uniaxial cyclic straining experiments on metais (see
for example,{22]). The behavior of the hardness and the anelastic stress invariant for this case
is shown in Fig. 14. There are periods where the two are equal (analogous to tensile or
compressive yielding in classical plasticity) interspersed with periods in which o* drops to zero
and increases again.

7. CONCLUSIONS

The proposed computational scheme is very efficient for analysing the time-dependent
inelastic response of structures obeying Hart’s constitutive relations. Hart's model, which has
been previously shown to accurately simulate quantitative uniaxial experimental results on
metals for a variety of $tress and strain histories, is here shown to qualitatively simulate a wide
variety of experimentally observed phenomena in creep and plasticity for a structural element
subjected to a multiaxial state of stress. The scalar state variable called hardness and the tensor
state variable called anelastic strain is found to be adequate for representing the effect of
previous deformation history on subsequent deformation behavior.
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